Do birdsong and human speech share biological roots?

Experiments with zebra finches suggest songbirds also have 'universal grammar'

Scientists who study birdsong have been intrigued for some time by the possibility that human speech and music may be rooted in biological processes shared across a variety of animals. Now, research by McGill University biologists provides new evidence to support this idea.

In a series of experiments, the researchers found that young zebra finches -- a species often used to study birdsong -- are intrinsically biased to learn to produce particular kinds of sound patterns over others. "In addition, these sound patterns resembled patterns that are frequently observed across human languages and in music," says Jon Sakata, Associate Professor of Biology at McGill and senior author of a paper published online in Current Biology on Nov. 22.

On the shoulders of Chomsky


The idea for the experiments was inspired by current hypotheses on human language and music. Linguists have long found that the world's languages share many common features, termed "universals." These features encompass the syntactic structure of languages (e.g., word order) as well as finer acoustic patterns of speech, such as the timing, pitch, and stress of utterances. Some theorists, including Noam Chomsky, have postulated that these patterns reflect a "universal grammar" built on innate brain mechanisms that promote and bias language learning. Researchers continue to debate the extent of these innate brain mechanisms, in part because of the potential for cultural propagation to account for universals.

At the same time, vast surveys of zebra finch songs have documented a variety of acoustic patterns found universally across populations. "Because the nature of these universals bears similarity to those in humans and because songbirds learn their vocalizations much in the same way that humans acquire speech and language, we were motivated to test biological predisposition in vocal learning in songbirds," says Logan James, a PhD student in Sakata's lab and co-author of the new study. Read more...

No comments:

Post a Comment