Why is it so difficult to learn a second language as an adult?

A study in patients with epilepsy is helping researchers understand how the brain manages the task of learning a new language while retaining our mother tongue. The study, by neuroscientists at UC San Francisco, sheds light on the age-old question of why it's so difficult to learn a second language as an adult.

The somewhat surprising results gave the team a window into how the brain navigates the tradeoff between neuroplasticity -- the ability to grow new connections between neurons when learning new things -- and stability, which allows us to maintain the integrated networks of things we've already learned. The findings appear in the Aug. 30, 2021, issue of Proceedings of the National Academy of Sciences. "When learning a new language, our brains are somehow accommodating both of these forces as they're competing against each other," said Matt Leonard, PhD, assistant professor of neurological surgery and a member of the UCSF Weill Institute for Neurosciences. By using electrodes on the surface of the brain to follow high-resolution neural signals, the team found that clusters of neurons scattered throughout the speech cortex appear to fine-tune themselves as a listener gains familiarity with foreign sounds. "These are our first insights into what's changing in the brain between first hearing the sounds of a foreign language and being able to recognize them," said Leonard, who is a principal investigator on the study. "That in-between stage is a crucial step in language learning but has been difficult to tackle, because the process is dynamic and unique to the individual," he said. "With this study, we were able to see what's actually happening in the brain regions involved in differentiating sounds during this initial phase of learning." Brain Activity Shifts as Foreign Sounds Become Familiar Learning the sounds of a new language is the first step in learning to use that language, said Leonard. So for this study, Leonard and lead author and postdoctoral scholar Han Yi, PhD, investigated how the activity in the dispersed brain regions associated with language shifted as the listener became more familiar with the foreign sounds. The team worked with 10 patient volunteers, aged 19 to 59, whose native language is English, and asked them to recognize speech sounds in Mandarin. Mandarin is a tonal language in which the meaning of the word relies not only on the vowel and consonant sounds but also on subtle changes in the pitch of the voice, known as tones. Speakers of non-tonal languages like English often find it very challenging to discern these unfamiliar sounds. Each of the volunteers had previously had brain surgery, during which electrodes were implanted in their brains to locate the source of their seizures. The study included seven patients at the UCSF Epilepsy Center, and three in the Epilepsy Center at the University of Iowa Hospitals and Clinics. The volunteers agreed to allow Leonard and his team to gather data from high-density, 256-channel electrodes placed on the surface of the brain regions that process speech sounds. Read more...

Back to Language & Communication

No comments:

Post a Comment