Electronic cigarettes (e-cigarettes) have evolved over time. Between 2013 and 2018, there was a 6-fold increase in the proportion of total US e-cigarette sales consisting of products with high nicotine concentrations, including the JUUL e-cigarette brand, which has been widely used by adolescents and young adults.
Although nicotine has neuropharmacologically mediated reinforcing effects once absorbed into the bloodstream, alkaline free-base nicotine is bitter and irritates the airways. Before the entry of the JUUL e-cigarette brand into the market, e-cigarettes contained nicotine in its alkaline free-base chemical form, and free-base nicotine products with higher nicotine concentrations produced aerosol that was perceived by users as harsh, bitter, and less appealing and were infrequently sold. JUUL and other manufacturers of high-nicotine e-cigarettes have begun adding organic acids to their products, which changes nicotine from a free base to a protonated salt. It has been hypothesized that e-cigarettes with high nicotine concentrations in salt vs free-base nicotine formulations produce less aversive sensory effects, which might make e-cigarettes easier to inhale, more appealing, and more addictive. To date, this hypothesis has gone untested. Evidence that nicotine salt formulations enhance the appeal and sensory qualities of vaping might suggest that new regulations limiting sales of e-cigarettes with acid additives might benefit public health for populations who do not use e-cigarettes to quit smoking.
This trial tested the hypothesis that exposure to e-cigarettes with salt vs free-base nicotine formulations would increase user-reported appeal and improve the sensory attributes of vaping. Additional objectives were to determine the generalizability of the results across different e-cigarette flavors and populations by examining whether nicotine formulation effects differed by flavor and ever combustible cigarette smoking status. Read more...
No comments:
Post a Comment