If you are a researcher who wants to see how just a few cells in an organism are behaving, it is no simple task. The human body contains approximately 37 trillion cells; the fruit fly flitting around the overripe bananas on your counter might have 50,000 cells.
Even Caenorhabditis elegans, a tiny worm commonly used in biological research, can have as many as 3,000 cells. So, how do you monitor a couple of microscopic specks amid all of that? Scientists working in the Caltech lab of Mikhail G. Shapiro, professor of chemical engineering and Heritage Medical Research Institute Investigator, have found a way. The new technique makes use of so-called acoustic reporter genes, of which Shapiro has been a pioneering developer. To understand acoustic reporter genes, first know that reporter genes are a specialized snippet of DNA that researchers can insert into an organism’s genome to help them understand what it is doing. Historically, reporter genes have encoded fluorescent proteins. For example, if a researcher inserts one of these reporter genes next to a gene they want to study—say, the gene that is responsible for the development of neurons—the activation of those neuron genes will also produce fluorescent protein molecules. When the right kind of light is shined upon those cells, they will light up, kind of like how a highlighter can mark a specific passage in a book. These fluorescent reporter genes have a big disadvantage though: light does not penetrate very far through living tissues. Read more...
No comments:
Post a Comment