What makes us human? The answer may be found in overlooked DNA

Our DNA is very similar to that of the chimpanzee, which in evolutionary terms is our closest living relative. Stem cell researchers at Lund University in Sweden have now found a previously overlooked part of our DNA, so-called non-coded DNA, that appears to contribute to a difference which, despite all our similarities, may explain why our brains work differently. The study is published in the journal Cell Stem Cell.

The chimpanzee is our closest living relative in evolutionary terms and research suggests our kinship derives from a common ancestor. About five to six million years ago, our evolutionary paths separated, leading to the chimpanzee of today, and Homo Sapiens, humankind in the 21st century. In a new study, stem cell researchers at Lund examined what it is in our DNA that makes human and chimpanzee brains different -- and they have found answers. "Instead of studying living humans and chimpanzees, we used stem cells grown in a lab. The stem cells were reprogrammed from skin cells by our partners in Germany, the USA and Japan. Then we examined the stem cells that we had developed into brain cells," explains Johan Jakobsson, professor of neuroscience at Lund University, who led the study.

Using the stem cells, the researchers specifically grew brain cells from humans and chimpanzees and compared the two cell types. The researchers then found that humans and chimpanzees use a part of their DNA in different ways, which appears to play a considerable role in the development of our brains. "The part of our DNA identified as different was unexpected. It was a so-called structural variant of DNA that were previously called "junk DNA," a long repetitive DNA string which has long been deemed to have no function. Previously, researchers have looked for answers in the part of the DNA where the protein-producing genes are -- which only makes up about two per cent of our entire DNA -- and examined the proteins themselves to find examples of differences." The new findings thus indicate that the differences appear to lie outside the protein-coding genes in what has been labelled as "junk DNA," which was thought to have no function and which constitutes the majority of our DNA. Read more...

Back to Science

No comments:

Post a Comment