Researchers develop advanced catalysts for clean hydrogen production

Oregon State University research into the design of catalysts has shown that hydrogen can be cleanly produced with much greater efficiency and at a lower cost than is possible with current commercially available catalysts.

A catalyst is a substance that increases the rate of a chemical reaction without itself undergoing any permanent chemical change. The findings are significant because the production of hydrogen is important for "many aspects of our life, such as fuel cells for cars and the manufacture of many useful chemicals such as ammonia," said the OSU College of Engineering's Zhenxing Feng, a chemical engineering professor who led the research. "It's also used in the refining of metals, for producing man-made materials such as plastics and for a range of other purposes." Producing hydrogen by splitting water via an electrochemical catalytic process is cleaner and more sustainable than the conventional method of deriving hydrogen from natural gas via a carbon-dioxide-producing process known as methane-steam reforming, Feng said. But the cost of the greener technique has been a barrier in the marketplace. The new findings, which describe ways to design catalysts that can greatly improve the efficiency of the clean hydrogen production process, were published in Science Advances and JACS Au. In facilitating reaction processes, catalysts often experience structural changes, Feng said. Sometimes the changes are reversible, other times irreversible, and irreversible restructuring is believed to degrade a catalyst's stability, leading to a loss of catalytic activity that lowers reaction efficiency. Read more...

Back to Science & Technology

No comments:

Post a Comment